Main Article Content

Nurillahi Febria Leswana
Dwi Siswanta
Adhitasari Suratman

Abstract

ABSTRAK

Telah dilakukan sintesis membran polistirena sulfonat (PSS)-kitosan dari modifikasi limbah styrofoam, kemudian dipelajari kemampuannya dalam mengadsorpsi logam Ni(II) dan Cu(II). Telah ditentukan pula komposisi optimum PSS-kitosan, uji stabilitas asam basa, dan kemampuan swellingnya. Parameter kajian adsorpsi yang dipelajari dalam penelitian ini meliputi pH optimum, kinetika adsorpsi, isoterm adsorpsi, pengaruh kation lain secara selektifitas, dan penentuan mekanisme adsorpsi. Analisis logam Cu(II) dan Ni(II) sebelum dan sesudah proses adsorpsi dilakukan dengan menggunakan metode Spektrofotometri Serapan Atom (SSA)


Hasil penelitian menunjukkan  bahwa polistirena sulfonat (PSS) berhasil diperoleh dari reaksi sulfonasi limbah styrofoam yang ditunjukan dengan spektra FTIR. Komposisi optimum membran PSS:kitosan untuk mengadsorpsi logam Cu(II) dan Ni(II) adalah  perbandingan 60:40 dengan kestabilan, sifat fisik, dan kemampuan adsorpsi yang paling baik. Keadaan pH optimum adsorpsi logam Cu(II) dan Ni(II) berada pada pH 5, waktu optimum berturut-turut 45 menit dan 60 menit, serta konsentrasi optimum berturut-turut 60 ppm dan 40 ppm. Model kinetika dan isoterm adsorpsi logam Cu(II) dan Ni(II) pada membran PSS-kitosan adalah orde kedua semu (McKay dan Ho) dan model isoterm Freundlich. Tetapan laju reaksi logam Cu(II) dan Ni(II) pada pH 5 berturut-turut 0,480 mmol/g-1menit-1 dan 0,423 mmol/g-1menit-1. Adanya logam Ni(II) dalam adsorpsi Cu(II) tidak memberikan pengaruh yang signifikan sampai pada perbandingan Ni(II)/Cu(II)= 2:1, namun sebaliknya dengan kehadiran logam Cu(II) pada adsorpsi logam Ni(II) sudah memberikan pengaruh pada perbandingan Ni(II)/Cu(II)=1:1. Afinitas membran PSS-kitosan terhadap logam adalah Cu(II) > Ni(II). Pada studi desorpsi diketahui jenis interaksi antara adsorbat dan situs aktif adsorben merupakan mekanisme pembentukan kompleks, pemerangkapan dan pembentukan ikatan hidrogen.


 


ABSTRACT

Synthesis of polystyrene sulphonate (PSS) – chitosan membrane of styrofoam waste modification and its ability to adsorb Ni (II) and Cu (II) metals has been studied. The optimum composition of PSS-chitosan, acidity stability test, and swelling ability have been determined. The parameters of the adsorption study studied in this study include optimum pH, adsorption kinetics, adsorption isotherms, selective cationic effects, and determination of adsorption mechanisms. Analysis of Cu (II) and Ni (II) metals before and after the adsorption process was performed using Atomic Absorption Spectrophotometric (AAS)


The results showed that polystyrene sulphonate (PSS) was obtained from the sulfonation of styrofoam waste using the FTIR spectra. The optimum composition of rasio PSS: chitosan membrane for adsorbing Cu (II) and Ni (II) is 60:40 with the best stability, physical properties, and adsorption capability. The optimum pH adsorption of Cu (II) and Ni (II) metals was at pH 5, the optimum time was 45 min and 60 min, and the optimum concentrations were 60 ppm and 40 ppm. The kinetic and adsorption models of Cu (II) and Ni (II) metals on PSS-chitosan membranes are second-order (McKay and Ho) and Freundlich isotherm model. The reaction rates of Cu (II) and Ni (II) reactions at pH 5 were 0.480 mmol / g-1menit-1 and 0.423 mmol / g-1menit-1. The presence of Ni (II) metal in Cu (II) adsorption did not give a significant effect to the ratio of Ni (II) / Cu (II) = 2: 1, but with the presence of Cu (II) metal on metal adsorption Ni (II) have an effect on the ratio of Ni (II) / Cu (II) = 1: 1. The affinity of PSS-chitosan membrane to metal is Cu (II)> Ni (II). Sequential desorption studies showed that the adsorption of Cu (II) and Ni (II) metals on the PSS-chitosan membrane were estimated to follow a complex formation, hydrogen bond formation, and physical entrapment mechanisms.


 

Article Details

References
1. Bekri-Abbes, I., Bayoudh, S., and Baklouti, M. , 2008, The removal of hardness of water using sulfonated waste plastic, . Desalination 222, 81–86.
2. Memon, S.Q., Bhanger, M.I., Hasany, S.M., and Khuhawar, M.Y. , 2006, Sorption behavior of impregnated Styrofoam for the removal of Cd(II) ions, . Colloids Surfaces A Physicochem. Eng. Asp. 279, 142–148. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0927775706000082 [Accessed February 6, 2018].
3. Bortoleto, G.G., Macarovscha, G.T., and Cadore, S. , 2004, Determination of cadmium by flame-atomic absorption spectrometry after preconcentration on silica gel modified with cupferron, . J. Braz. Chem. Soc. 15, 313–317.
4. Mahmoud, M.E., Abdou, A.E.H., and Ahmed, S.B. , 2016, Conversion of Waste Styrofoam into Engineered Adsorbents for Efficient Removal of Cadmium, Lead and Mercury from Water, . ACS Sustain. Chem. Eng. 4, 819–827.
5. Ghaee, A., Shariaty-Niassar, M., Barzin, J., and Zarghan, A. , 2012, Adsorption of copper and nickel ions on macroporous chitosan membrane: Equilibrium study, . Appl. Surf. Sci. 258, 7732–7743. Available at: http://dx.doi.org/10.1016/j.apsusc.2012.04.131.
6. Abu-Saied, M.A., Wycisk, R., Abbassy, M.M., El-Naim, G.A., El-Demerdash, F., Youssef, M.E., Bassuony, H., and Pintauro, P.N. , 2017, Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions—Fabrication and sorption studies, . Carbohydr. Polym. 165, 149–158. Available at: http://dx.doi.org/10.1016/j.carbpol.2016.12.039.
7. Berger, J., Reist, M., Mayer, J.M., Felt, O., and Gurny, R. , 2004, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, . Eur. J. Pharm. Biopharm. 57, 35–52.
8. Morris, G.A., Castile, J., Smith, A., Adams, G.G., and Harding, S.E. , 2009, Macromolecular conformation of chitosan in dilute solution: A new global hydrodynamic approach, . Carbohydr. Polym. 76, 616–621. Available at: http://dx.doi.org/10.1016/j.carbpol.2008.11.025.
9. Hamman, J.H. , 2010, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems, . Mar. Drugs 8, 1305–1322.
10. Febryani, M. , 2008, Sintesis Membran Polistiren dan Polyblend-nya dengan Kitosan untuk Aplikasi Sel Bahan Bakar (Fuel Cell), . Skripsi Institut T, Bandung.
11. Aravind, U.K., Mathew, J., and Aravindakumar, C.T. , 2007, Transport studies of BSA, lysozyme and ovalbumin through chitosan/polystyrene sulfonate multilayer membrane, . J. Memb. Sci. 299, 146–155.
12. Chen, L.H., Chan, C.C., Menon, R., Balamurali, P., Wong, W.C., Ang, X.M., Hu, P.B., Shaillender, M., Neu, B., Zu, P., et al. , 2013, Sensors and Actuators B : Chemical Fabry – Perot fiber-optic immunosensor based on suspended layer-by-layer ( chitosan / polystyrene sulfonate ) membrane, . 188, 185–192.
13. Gierszewska-Druzyńska, M., Ostrowska-Czubenko, J., and Kwiatkowska, A. , 2013, Effect of ionic crosslinking on density of hydrogel chitosan membranes, . Prog. Chem. Appl. Chitin its Deriv. 18, 49–58.
14. Ngah, W.S.W., and Fatinathan, S. , 2010, Pb(II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies, . J. Environ. Sci. 22, 338–346. Available at: http://dx.doi.org/10.1016/S1001-0742(09)60113-3.
15. Chen, L.H., Ang, X.M., Chan, C.C., Shaillender, M., Neu, B., Wong, W.C., Zu, P., and Leong, K.C. , 2012, Layer-by-layer (chitosan/polystyrene sulfonate) membrane-based fabry-perot interferometric fiber optic biosensor, . IEEE J. Sel. Top. Quantum Electron. 18, 1457–1464.
16. Al-Sabagh, A.M., Moustafa, Y.M., Hamdy, A., Killa, H.M., Ghanem, R.T.M., and Morsi, R.E. , 2017, Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption, . Egypt. J. Pet. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1110062117300600.
17. Akpomie, K.G., Dawodu, F.A., and Adebowale, K.O. , 2015, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, . Alexandria Eng. J. 54, No. 3, 757–767.
18. Rathod, V., Pansare, H., Bhalerao, S.A., and Maind, S.D. , 2015, Adsorption and Desorption Studies of Cadmium (II) ions from aqueous solutions onto Tur pod (Cajanus cajan), . Int. J. Adv. Chem. Res 4, No. 5, 30–38.
19. Aydin, H., Bulut, Y., and C., Y. , 2008, Removal of Copper (II) from Aqueous Solution by Adsorption onto Low-cost Adsorbent, . J. Environ. Manag. 87, 37.
20. Arshadi, M., Amiri, M.J., and Mousavi, S. , 2014, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, (Elsevier) Available at: http://dx.doi.org/10.1016/j.wri.2014.06.001.
21. Nasef, M.M., Hamdani, S., Ujang, Z., and Dahlan, K.Z.M. , 2010, Removal of Metal IOns from Aquous Solutions Using Crosslinked Polyethylene-g-polystyrene Sulfonic Acid Adsorbent Prepared by Radiation Grafting, . J. Chil. Chem. Soc 55, 421–427.
22. Bouhamed, F., Elouear, Z., Bouzid, J., and Ouddane, B. , 2016, Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones, . Environ. Sci. Pollut. Res. 23, 15801–15806.
23. Chem, T.J. , 2000, Adsorption of Some Heavy Metal Ions from Aqueous Solution by Activated Carbon and Comparison of Percent Adsorption Results of Activated Carbon with those of Some Other Adsorbents, . Turkish J. Chem. 24, 291–297.
24. Moreno, J.C., Gómez, R., and Giraldo, L. , 2010, Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal, . Materials (Basel). 3, 452–466.
25. Guibal, E. , 2003, Interaction of Metal Ions with Chitosan-Based Sorbent: a Review, . J. Seppur 38, 43–47.
26. Winter, M.J. , 2015, d-Block Chemistry, 2nd ed. (United Kingdom: Oxford University Press).